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Abstract

Inequalities satisfied by the zeros of the solutions of second-order hypergeometric equations are
derived through a systematic use of Liouville transformations together with the application of classical
Sturm theorems. This systematic study allows us to improve previously known inequalities and to
extend their range of validity as well as to discover inequalities which appear to be new. Among other
properties obtained, Szegd's bounds on the zeros of Jacobi polynoPé?‘a/f%(cosH) for |o| < %
1Pl < % are completed with results for the rest of parameter values, Grosjean’s inequality (J. Approx.
Theory 50 (1987) 84) on the zeros of Legendre polynomials is shown to be valid for Jacobi polynomials
with || < 1, bounds on ratios of consecutive zeros of Gauss and confluent hypergeometric functions
are derived as well as an inequality involving the geometric mean of zeros of Bessel functions.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Sturm theorems for second-order ODEs, in their different formulations, are well-known
results from which a large variety of properties have been obtained (see for instance
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[5,7,10,12]). As a particular case of special relevance, bounds on the distances between
consecutive zeros and convexity properties of the zeros of hypergeometric functions can be
derived.

These results are usually based on adequate changes of both the dependent and the
independent variables, which lead to a transformed differential equation which is simple to
analyze.

For example, given a Jacobi polynom}afl""ﬁ) (x), the function

2412 p+1/2
u(f) = (sinz) (cosg) PP (cosh) (1)

satisfies a differential equation in normal foft2, p. 67]

d?u/d0? + AO)u(0) = 0,

1\? 1/4—o® 1/4—p?
A(()):(n+a+§+ >+ / 2+ / ﬁe @)
4sirf = 4cod -
sirf 2 co$ 5
When|«| < 3 and|B| < 4 the coefficientd (0) satisfies
2
A®O) > <n+°‘+§+1> = Ay 3)

and Sturm’s comparison theorem provides the following bound on the distance between
two consecutive zeros af(0) [12, p. 125]:
T T 1 1
Or+1 — O < \/E T TGt fED)2 when|a| < > 1Bl < > (4)

A similar analysis can be carried out, for instance, in the case of Laguerre polynomials,
considering the function(x) = exp(—x2)x*+1/2L® (x2). This gives a lower bound on
the differences of square roots of consecutive zeros of Laguerre polynomials and also a
bound on distances between consecutive zeros of Hermite polynaifials [12, p. 131].
The latter result comes from the fact tH&t(./x), x > 0, satisfies the differential equation
for Laguerre polynomials withy = —%. Another example is provided by the functions
J/xCy(x), Cy(x) being a cylinder function (Bessel function), which satisfy differential
equations in normal form suitable for the application of Sturm comparison thga&jm

A question remains regarding this type of analysis: why make these changes of the
dependent and independent variables and not others? In other words: what changes are
amenable to a simple application of the Sturm theorems? In this paper, we perform a
systematic study of Liouville transformations of the hypergeometric equations (Gauss and
confluent) which lead to a simple analysis, in a sense to be made explicit later, of the
monotonicity properties of the coefficient of the resulting differential equation (in normal
form). The above-mentioned results for Jacobi, Laguerre and Hermite polynomials and
for Bessel functions will be particular cases of the more general results provided by this
systematic study.
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Our analysis will also reveal convexity properties of the zeros and of simple functions of
the zeros. For instance, we will see how Grosjean’s convexity proferigee alsq7]),
for the zeros of Legendre polynomials

(1—x0)?% < (L= xp-1) (L — x541) (5)

also holds for the zeros of Jacobi polynomiaf%’ﬁ) (x) with | | <1 (Legendre polynomials
being the particular case= f = 0) and in general for the zeros of any other solution of
the corresponding differential equation in the interi@ll).

In addition to these generalizations of previous results, inequalities which appear to be
new can be obtained, like for instance bounds on ratios of consecutive zeros.

Our results will be valid for any non-trivial solution of the corresponding differential
equation. We will restrict ourselves to real intervals where the coefficients of the differential
equation are analytic and to those cases where the solutions of the differential equation have
at least two zeros in that interval. This corresponds to the oscillatory situations studied in

[3].

2. Methodology
We will consider the Sturm comparison and convexity theorems in the following form.

Theorem 1(Sturm). Lety” + A(x)y = 0 be a second-order differential equation written
in normal form,with A(x) continuous in(a, b). Let y(x) be a non-trivial solution of the
differential equation in(a, b). Let x; < xx+1 < ... denote consecutive zeros yfr) in
(a, b) arranged in increasing order. Then

(1) If there existsAy; > O such thatA(x) < Ay in (a, b) then

T
Ay

(2) If there existsA,,, > Osuch thatA(x) > A,, in (a, b) then

Axk = Xg4+1 — Xk >

T
VA,

(3) If A(x) is strictly increasing in(a, b) thenA2x;, = Xp+2 — 2x41 + xx < O.
(4) If A(x) is strictly decreasing iria, b) thenA%x;, = Xk+2 — 2Xk41 + x> O,

Axp = Xp41 — Xk <

Remark 2. An examination of the proof (Appendi) shows that the first result still holds
if there is one point ina, b) whereA(x) = Ay andA(x) < Ay elsewhere. For instance,
we will find this case whemr (x) reaches a relative maximum(a, ») and it is an absolute
maximum in(a, b). The second result of the theorem can be generalized in the same way.

The third and fourth results of Theoretrare usually known as convexity theorgj,
which admits the following formulation.
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Theorem 3(Sturm convexity theorem).ety”+ A(x)y = Owith A(x) continuous ir(a, b)
and such that it may change sign(in, ») at one poin{x = ¢) at most. Letd (x) be positive
in an intervall C (a, b) and,if A(x) changes sigrget A(x) < 0in the rest of the interval
(except ate = ¢).

(1) If A(x) is strictly increasing in | them%x;, = Xp42 — 2x+1 + xx < O.

(2) If A(x) is strictly decreasing in | ther?x, = Xg+2 — 2xk41 + x5 > 0.

These are well-known results. We provide a brief sketch of the proofs in AppAndix
We will apply these theorems to confluent and Gauss hypergeometric functions, which
are solutions of differential equations

y' +Bx)y +A(x)y =0 (6)

with one (confluent functions at = 0) or two finite singular regular points (Gauss hyper-
geometric function at = 0 and 1).

Our goal will be to obtain bounds on distances and convexity properties, either of the
zeros or of simple functions of these zeros, which remain valid for all the zeros inside a
given maximal interval of continuity oB(x) andA(x). In particular, we will focus on the
intervals(0, +o00) for confluent functions an@, 1) for Gauss hypergeometric functions;
as we later discuss, properties in the rest of the maximal intervals can be obtained using
linear transformations (Egs. (17) and (18)).

The differential equations satisfied by the hypergeometric functions are not in normal
form, but they can be transformed using a change of function, a change of variables or both.
Given a solutiory (x) of a differential equation in standard form (Eq. (6)), the funcfian)
defined as

1 X
yx) = eXD(E/ B(X)) y(x) )
satisfies the equation
7" 4+ A(x)y = Owith A(x) = A — B'/2 — B?/4, (8)

which isin the form suitable for the application of Theor&nn addition to these changes of
the dependent variable, we can also consider changes of the independent yatiatole,
followed by a transformation to normal form. It is straightforward to check that given a
functiony(x) which is a solution of Eq. (6) then the functidt(z), with Y (z(x)) given by

Y(z(x)) = \/%exp(%/xmx)) y(x), 9)
satisfies the equation in normal form

Y(2) + Q)Y (2) =0. (10)
Here the dots mean differentiation with respecz tmd

Qz) = P?A(x(2) + 3{x, 2}, (11)
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where{x, z} is the Schwarzian derivative af(z) with respect t@ [8, p. 191]
1/2 d? 1/2
{x,z} = —2x"/“—x~ 12
e (12)

and A(x) is given by Eq. (8). This transformation of the differential equation is called a
Liouville transformation, of crucial importance in the asymptotic analysis of second-order
ODEs[8]. We can also conside®(z) as a function ofk, which leads to the following
expression:

1 - 1
Q) =Qz(x)) = W(A(X) — 5l

(13)

1 B'(x) B(x)? 3dx)? d'x)
= — A f— — _
d(x)? ( == 4 aawp? 2d(x)>’

where{z, x} is the Schwarzian derivative afx) with respect toc andd (x) = 7/(x).

The transformed functioli (x) = Y (z(x)), EQ. (9), has the same zerosyds) in (a, b)
provided thatB(x) is continuous ina, b). Besides, the equation is in the form suitable for
the application of Sturm theorems, becalige) satisfies (10).

We will use the freedom to choos&x) conveniently so that the problem becomes
tractable in the sense that the monotonicity properti€3(ef are easily obtained. For this
purpose, it is preferable to study the monotonicity propertieQ(@f) rather than those of
Q(z). Let us notice thaf2(x) and (z) have the same monotonicity properties provided
we consider changes of variable such thi@) > 0 (because? (x) = Q(z)7/(x)). In
addition, we introduce a further simplification of the problem by restricting the analysis
to those changes of variable for which solving the equafdix) = 0 is equivalent to
solving a quadratic equation. Within these restrictions, we will perform a detailed study of
the monotonicity of2(x) for the available changes of variable.

We will now consider separately the case of the differential equations satisfied by the
hypergeometric functionsFy, 1F1 andgFy, starting from,F, p = 2 and decreasing.

This study includes the whole family of hypergeometric functions that satisfy second-order
ODEs for real parameters. The case of the differential equation satisfied gigthe

x2y" 4 [-14+x(@+b+1)]y +aby =0, (14)
need not be considered separately, becauséyif/, x) is a set of solutions of the con-
fluent hypergeometric equatiogHi(y; 4; x) being one of the solutions), then(x) =
|x|"%y(a,1+a—b,—1/x),forx > 0orx < 0O, are solutions of Eq. (14). In other words,
the properties of the zeros of solutions of Eq. (14) can be related to the properties of the
zeros of confluent hypergeometric functions.

3. Gauss hypergeometric equation

We consider the hypergeometric equation, satisfied by the Gauss hypergeometric func-
tionsoF1(a, b; c; x)

x(1=x)y"+[c—(@+b+Dx]y —aby=0 (15)
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with the restrictions on the parameters that allow for oscillatory solutio(® ih) (se€[3]),
namely
a<0,b>1,c—a>1,¢c—b<0 (16)

or, by symmetry, the same relations interchangiramdb.

Properties of the zeros in the other two maximal intervals of continGitge, 0) and
(1, +00), again in the oscillatory case, can be derived from the properties of the zeros in
(0, 1) using linear transformations of the differential equations that map these other two
intervals into(0, 1) (se€[2, vol. |, Chapter II]). Indeed, if we denote (y, 4; u, x) a set
of solutions of the hypergeometric equatiofd — x)y” + (u— (y + A+ Dx)y —yly =0
in the interval(0, 1), solutions in the other two intervals can be obtained by considering the
fact that both

y@a,b;c;x) = A —x)"*Wa,c—b;c;x/(x—1)), x<O a7)
and
y@a,b;c;x) =x"Y(a,a+1l—cia+b+1—c;1-1/x), x>1 (18)

are solutions of the hypergeometric differential equatiti-x)y” +(c— (a+b+1)x)y —
aby = 0.
Instead of the parameteasb andc, we will normally use the real parameters

n=—-a,a=c—1, f=a+b—c, (19)

which correspond to the standard notation for Jacobi polynomials
PP (x) = <” : “) oFi(—n,n+a+f+L0+1;(1—x)/2). (20)

The oscillatory conditions in the interveéd, 1) (Eq. (16)) can be rephrased, in terms of the
Jacobi parameters, as follows:
n>0n+a+pf>0n+a>0n+p>0. (21)

Except in Theorenil, in this section we always assume that andf satisfy Eq. (21).
If we apply the transformations (7) and (8) to the hypergeometric differential equation
(15) we arrive at an equation in normal form with

L2—®—f+1 1—0® 1-—p2

4A(x) = 22
0 x(1-x) x2 1-x)? (22)

where
L=b—a=2n+o+pf+1. (23)

The study of the monotonicity properties afx) for all ranges of the parametels «
andf, with the conditions (21) seems a difficult task, because it involves solving a cubic
equation depending on three parameters in order to obtain the pointsiiyeje= 0. We
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will consider the restriction before mentioned, that is, we will use changes of variable such
that solving®'(x) = 0 is equivalent to solving a quadratic equation in the inte@al) for
any values of the parameters. This approach will allow us to obtain global inequalities which
hold for all the zeros inside each interval of continuityAxfc); classical inequalitiefl 2],
as well as new inequalities or generalizations of earlier inequal8jewill be obtained in
a systematic way.

For the Gauss hypergeometric equation there are several different types of changes of
variables which provide such simple coefficief?éx). Looking at Eqg. (13) it is easy to
see that the ternzﬂ(x)/z’(x)2 will be simple for all parameters if the factor 1(x)? is
proportional to certain powers a&fand 1— x, for instance

1/7(x)% x x(1— x), x%, (1 — x)%, x2(L — x), x(1 — x)°, x2(1L — x)°. (24)

Onthe other hand, one can check that for these changes of variable the Schwarzian derivative
term gives a contribution of the same type, and that the resuRingis such thaf2’(x) = 0
is equivalent to a quadratic equation(® 1).

It is interesting to note that the changes of variable corresponding to Eq. (24) are those
related to the different fixed point methods, stemming from first-order difference-differential
equations (DDEs) available for the computation of the zeros of Gauss hypergeometric
functions[3,4,9]. Interlacing properties between the zeros of contiguous hypergeometric
functions are easily available from a simple analysis of these DDEs, as it was dadg in
We will not explore here this type of properties.

The changes of variable described before (Eq. (24)) are not the only ones that lead to
a simpleQ(x). In AppendixB we perform a more systematic analysis to prove that the
changes of variable(x) such that

Z(x)=dx) =xP"H1-x)171
where
p=0 or q=0 or p+qg=1

are also valid. However, here we will only study in detail those changes of variable given
by (24), which lead to inequalities in terms of elementary functions of the zeros.

In AppendixB we also show that interchanging the valuepa@ndq is equivalent to
interchangingx and 8, and alsax and 1— x. Hence, it is enough to consider for instance
q > p, and the analogous properties whek ¢ follow immediately. Therefore, itis enough
to take into account the cas@s ¢) = (3. ). (0, 1), (0, 3). (0, 0) in order to complete the
analysis of the changes of variable given by Eq. (24).

3.1. The change(x) = arccos(1- 2x): Szegb
related results

s bounds for Jacobi polynomials and

Forp=¢qg = %,We can choosg(x) = arccos(t2x), which mapsthe intervaD, 1) onto
(0, m). The new variable(x) is the anglé) in Eq. (1). We will use the notatiofi(x) for the
change of variables instead ofr). Applying the corresponding Liouville transformation



A. Deafio et al. / Journal of Approximation Theory 131 (2004) 208—-230 215

we get
2 2
ac—1/4 —-1/4
400y = 12 Lo YA P-4 (25)
X 1—x
where
L=2n+o0+f+1 (26)

The differential equation in normal form (Eg. (10)) corresponding to the funciar(0))
in EQ. (25), turns out to be the differential equation studied by S{ERH(Eq. (2)). Not
surprisingly, the study of the monotonicity @fx) leads to Szegd's bound when, || < %
in a slightly improved version (compare Eq. (4) with Theorém It is straightforward to
check that when the oscillatory conditions (Eq. (21)) are satisfied we have the following
properties
(1) If |o| = |B| = 3, thenQ'(x) = 0,
(2) otherwise:
(@) Ifjol< % and|ff| < % thenQ(x) has exactly one absolute extremuniOnl] and it
iS a minimum.
(b) If |2/ >3 and|p| > 3, thenQ(x) has exactly one absolute extremuni@n1]and it
is a maximum.
(c) If |o/ >3 and|B|< 3, then@' (x) > 0in (0, 1).
(d) If |2/ < 3 and|B| >3, then@'(x) < 0in (0, 1).
In the cases where there is an extremum, it is reached at

Jia—a2
Xe = (27)
Jia— o2+ 174 g

and the value of2(x) at this point is

2
Q(xe) = % [in <\/|1/4— 2| +\/|1/4— ﬂ2|) } > 0, (28)

where the+ sign applies when the extremum is a maximum and-th&ign when it is a
minimum. Accordingly, the following relations are obtained in term8@f).

Theorem 4. Let n,o and f satisfy Eq.(21). Letxg, &k = 1,..., N, x1 < x2 < -+ <
xn, be the zeros of any solution of the hypergeometric equatiai,ih) and letf, =
arccos(l— 2x;), k =1, ..., N. Then the following hold:
(1) If |o| = |B| = 3, thenAG; = 2,
(2) otherwise:

(@) If o] < $ and|B|< 3, thenAly < 2r

\/L2+<4/1/4—a2+ 1/4—/32)2
2n
\/L2—<~/052—1/4+\//32—1/4)2.

(c) If |«/>2 and|pI< %, then4?0, < 0.

(b) If [« > % and || > 3, thenAO >
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(d) If || < 2 and || > 3, then4?0; > 0.

These results refine Szegd's bounds on distances betwedéhzéres of Jacobi poly-
nomials, forja| < %and|[£| < % and complete the range of possible parametarslf;.

We can obtain additional monotonicity results in the first two cases when we only consider
zeros which lie on the same side with respect to the extremu@ither on the increasing
or the decreasing side €f(x)). Let us denotde = arccos(1— 2xe) and sign@ — 0e) =
sign@; — Oe) for j =k, k + 1,k + 2 (we assume thdt;, j =k, k + 1,k + 2, lie on the
same side with respect ). Then426;, = Ok+2 — 20r 11 + 0 satisfies

(D If |2/ <3 and|B|< 3 (but not both equal tg) then
sign@® — 0e) 426; < 0.

(2 If |o>3 and|Bl >3 (but not both equal tg) then
sign@® — 0c) 420, > 0.

(29)

In the particular cases whefe| = |f|, the possible extrema are reachedat= % that

is 0e = w/2, and Szeg's monotonicity results are obtaing¢tl, p. 126, Theorem 6.3.3]

as a particular case. Il], a similar property, valid fota| < % and|p| > |«|, is proved;

this is related to Case 4 in Theorem (4) and to Case 1 in Eq. (29). In the sequel, we will
not insist on showing these partial monotonicity results and we will only consider bounds
and inequalities corresponding xezeros (or simple functions of these zeros) which are
satisfied in the whole intervaD, 1).

3.2. The change(x) = log(x): generalization of Grosjean’s inequality

Takingp = 0,9 = 1, we have the changgx) = log(x). The correspondin@(x)
function is

LP—?4+p2-1 1-p2
1-x 1-x0%

4Q(x) = —L? + (30)
where we see that the singularityxat= 0 has been absorbed by the new variaihe and
has disappeared fro@(x).

Again, assuming that the oscillatory conditions (E2L1)} are fulfilled, we have the
following monotonicity properties g0, 1):
(1) If |BI<1, then® (x) > 0.
(2) If |5 > 1, thenQ(x) has only one absolute maximum, which is located at

L? —o? — (B = 1)

0<xe= L2—a2+ﬁ2—1 <1, (32)
where
2 p2_ — N2 (B2 _
Qo) = 1L+ = (= DIL =0 = (= 1)] o1 (32)

16 p2—1

Consequently, we have the following:
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Theorem 5. Let n,o and f§ satisfy Eq(21).Letz(x) = log(x). Then the zeros of hyperge-

ometric functions in(0, 1) satisfy

(1) If |1 <1,then4?z; < 0. Therefore(reversing the change of variablé)e zeros of the
hypergeometric function satisfy the inequality

XE > Xp_1Xp41. (33)

(2) If || > 1,thenAzx > f(L, o, f) where

g1
f(L, o, )= 47T\/ (34)
(L +0)? = (B = DL — 0)® = (F* = 1]
or, in terms of the zeros of the hypergeometric function
xi—:l > exp(f (L, %, ). (35)

In terms of Jacobi ponnomiaIB,f“’ﬁ) (x), and denoting its zeros by, we obtain:

Corollary 6. Let n,o and f satisfy Eq(21). Then the zeros of Jacobi polynomials satisfy

W If [BI<Lthen (1— %)% > (1 — F-1)(1 — Fq0). (36)
) If |B| > 1then LI exp(f (L, o, B)). (37)
1— X

This result was proved by Grosje§B] in the particular case of Legendre polynomials
(see als@6]). Therefore, our resultis a generalization of Grosjean’s inequality to the case of
Jacobi polynomials, and in fact to any solution of the corresponding differential equation.

Interchanging the values pfandq we have the changgx) = —log(1— x) and we get
similar results, but withx andfj interchanged, as well asand 1— x, in Egs. (33) and (35).

In terms of the zeros of Jacobi polynomials, we get:

Corollary 7. Let n,o and f satisfy Eq(21). Then zeros of Jacobi polynomials satisfy
D) If o] <Lthen 1+ ) > (L + Zx—1) (L + Fry1). (38)

14 Xt
Xk

) If || > 1then > exp(f (L, B, %)). (39)

3.3. The change(x) = —tanh 1 (/1 — x).

Forp = 0 andg = % we consider the following change of variablgs) = — tanir?

(v/1— x). After the corresponding Liouville transformation, the singularity at 0 dis-
appears inf2(x), namely

2 2 1 2 B —1/4
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Again, always assuming that the oscillation conditions are fulfilled, it is easy to check the

following monotonicity properties:
(1) If |BI< 3 then@'(x) > 0in (0, 1).
2) If B 2% thenQ(x) has only one absolute maximum[id, 1], which is located at

2_
0<xe=1—,lwél, (41)
L*-1/4

where
2
Qxe) = <\/L2 —1/4— \/ﬂz - 1/4) —a?>0. (42)

Consequently, we have that

Theorem 8. Let n,« and f§ satisfy Eq.(21) and letz(x) = —tani™%(y/T—x). Then the

zeros of hypergeometric functions(i 1) satisfy the following inequalities:
Q) If 1P g% then4?z; < 0, or, in terms of the zeras; of the hypergeometric function,

XepaxXe—1  h(erD)h(xe-1)
43
2T hw? (43)

with
h(x) = (141 —x)2 (44)
(2) If |B1=> 3 thenAzx > p(L, «, f), where
p(L,o, f) = - . (45)
2
\/<\/L2 —1/4— /- 1/4) _ 2

This implies that

1+1—x; Xk+1
L,a, . 46

Similarly as before, if we consider the change of variables = tanh™1(,/x), we have
similar relations interchangingandp, p andq, x and 1— x. Namely:

Corollary 9. Letn,o andf satisfy Eq(21).Then the zeros of hypergeometric functions in
(0, 1) satisfy
(1) If |2/ < 3 then
1- 1— - _
(1 — xp41)( _ Xk—1) - g(Xk+1)g(;€k 1) a7)
(1—x0) 8(xk)

where

g) = 1+ Vx)2 (48)
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(2) If |of 2% thenAzy > p(L, f, o) for z(x) = tanh 1(/x), this means that

V3I—x 14+ /X1
1+\/x_k\/1—xk+1

3.4. The change(x) = log(x/(1— x))

> exp(p(L, p, a)). (49)

This change corresponds to the case ¢ = 0, and it treats the singularities at= 0

and 1 in the same way, as happened with the paseg = 1. This explains its invariance

with respect to the replacemenk> 1— x. Both singularities are eliminated §&(x), which
becomes

4Q(x) = —(L? — 1)x® + (L% + o> — % — 1)x — 2. (50)

This is a parabola with one absolute maximum at

<1, (51)

whereQ(x) attains the value
1(L2-1—(a—PHUL*—1—(a+ P
16 L>-1 '

This result remains true for any set of values of the parameters consistent with oscillation.
As a consequence of this we have

Az > f(p,o. L) = f(o, B, L), (53)

wheref is defined in Eq. (34).
Interms of the zeros of the hypergeometric function, we have the following global bound.

Q(xe) =

(52)

Theorem 10. The zeros of hypergeometric functiong@1) satisfy

1—xp  xpga
X l—xpq1

> exp(f(x, f, L)) (54)
for all values of the parameters consistent with oscillatfgx. (21)).

In terms of the zeros of hypergeometric functionsxfot 0 this result can be expressed
in an even simpler form. Indeed, using Eq. (17) itis straightforward to check the following:

Theorem 11. Given a solution of the hypergeometric equat({@5) which oscillates in
(—o0, 0), any two consecutive zeros in this interval satisfy

ﬂ>exp(f(c—l,a—b,c—b—a)) (55)
Xk

for all the values of ab and c consistent with oscillation i-oco, 0) (Remarkl2).
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For all the results in this section, except Theotemwe always consider that the param-
eters satisfy Eq. (21), which are the oscillatory conditiongirl). For Theorenil, the
oscillatory conditions are given in the next remark.

Remark 12. Forx < 0 the oscillatory conditions are
a<0 b<0,c¢c—a>1,¢c—b>1or
a>1,b>1,c—a<0,c—b<0. (56)

When these conditions are not satisfied, there are no solutions with two zéresan0),
see[3].

Going back to our original discussion in the inter¢@) 1), we notice that Theorert0
resembles a combination of the bound obtained in the gas® andg = 1 (Eqg. (35)) and
the related bound fop = 1 andg = 0, which reads

A0 exp(f (L. B o)) for fa] > 1. (57)
1— k41

Combining both we have, when| > 1 and|ff| > 1 simultaneously,

1—xp xppa

L exp(f (L, o, p) + f(L, f, o)), (58)

xp l—xpy

which is weaker than Eq. (54), because we impose no restriction on the parameters in Eq.
(54) and also in an asymptotic sense, becgude o, f)/f («, , L) — 0 asL — oc.
In Theoreml3, Eq. (54) is rephrased in terms of the zeros of Jacobi polynomials.

Theorem 13. The zerogin (0, 1)) of Jacobi polynomials satisfy

1— X 14 Xpa1
1+ X 1— Xpq1

> exp(f(a, f, L)) (59)

for all values of the parameters consistent with oscillatigq. (21)).

4. Kummer’s confluent hypergeometric equation

The confluent hypergeometric equation
xy"+(c—x)y —ay=0 (60)

is satisfied by the confluent hypergeometric seiilega; c; x). We concentrate on the

positive zeros of this or any other function which is a solution of Eq. (60). For the possible

negative zeros of these functions the relations are similar because Jf= y(a; ¢; x) is a

solution of Eq. (60) themz(x) = ¢*y(c —a, ¢, —x) is a solution of the same equation too.
Instead of the parameteasandc, we will normally use

n=-—a,o=c—1 (61)
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This notation corresponds to the standard for Laguerre polynomials

L’(l“)(x) = (n : a> 1F1(—=n; 0+ 1;x). (62)

In terms of these parameters the oscillatory condit{@hgor the solutions of Eq. (60)
in (0, +00) are given by
n>0n+o>0. (63)

Throughout this section, we assume thaindo satisfy Eq. (63).
Hermite polynomials are also related to the confluent hypergeometric equation because

Hy(x) = 2"'U(—n/2; 1/2 x?), (64)

where U(g c; x) is a solution of (60), namely the confluent hypergeometric function of the
second kind.

Let us now study the differential equations in normal form after convenient changes of
variable. As before, we write this transformed equation as

Y@ +Q02)Y(@ =0 (65)

and we study the monotonicity properties®fx) = Q(z(x)).
If we transform the equation to normal form directly we obtain

2L 1—0o?
4Q(x) = 14+ — + ——, (66)
X X
where we now define
L=2n+a+1. (67)

This means that the trivial changéx) = x already provides information. Also, it is easy
to see that other tractable changes of variable @érg= /x andz(x) = log(x).
We can carry out a more general analysis of the admissible changes by considering those
of the formd(x) = 7/(x) = x™~1 (and therefore(x) = x”/m,m # 0 andz(x) =
log(x), m = 0). For these changes we have

Qx) = —%x’z’"(xz —2Lx +o? — mz). (68)

A careful analysis of this function for all values of the parameters reveals the following
behaviour.

Lemma 14. LetQ(x) be given by Eq68)and suppose that the oscillatory conditiqEs.
(63)) are fulfilled. Let

xe:m—l/ZL_ VA ’ (69)

m—1 m—1




222 A. Deafio et al. / Journal of Approximation Theory 131 (2004) 208—-230

where
l 2
A= (m - 5) L2+ m1 —m)(® — m?). (70)

Then,except for some cases when < |m| andm € (0O, %) simultaneouslypne of the
following situations takes place necessarigardless of the value of n
(1) Either Q(x) has only one absolute extremum %0k 0 and it is a maximumpcated at
Xxe, WhereQ(xe) > 0.
(2) Or Q(x) satisfies the conditions of Theor&in (0, 1), 2(x) being strictly decreasing
when it is positive.
The situationg1) and(2) take place for the following values:
() If |o| > |m], then the situatiorfl) takes place for all values ¢#|.
(n If Jo| = |m| then:
(@) Ifm< 2, then the situatiorfl) takes place.
(b) f m> 2, then the situatiorf2) takes place.
(1) If |o] < |m]| then
(a) If m < 0, then the situatiorfl) takes place.
(b) If m > 3, then the situatiorf2) takes place.

Inthe previous lemma, itis understood that the corresponding limit should be taken when
a given expression loses meaning. For instance, whenl and|«| > |m| we understand

thatxe = lim,,1 mm 1/2 \/_Zl (2?2 — 1)/L. As a consequence of Lemr4,
Theoremsl and3 (see also Remark) we have

Theorem 15. Let xk, x¢41, ..., With x; < xx41 < ---, be positive consecutive zeros of
y(x), which is a solution of the equatiory” + (o« + 1 — x)y’ + ny = 0, withn > 0 and
n—+o>0.Let

xt = x

Omxk = Az(xp) = z(xxp1) — 2(xp) = ="K
X, = "
doxx = lim,,0 ktl ko log (xk+1/Xk),

S = A2(xi) = (' p — 2 + X /m,

0%k = 10g(xi42) — 210g(511) + 109 (xk)- (72)
Then:
Q) If o < |m| andm>% (simultaneouslyl)hené,znxk > 0.
2) If:

@) |o| > |m]|or

(b) lo = |m| andm < 5 or
©) || < |m|andm < 0O,
then

1—
OmXp > T 2nxg —m, (72)

VQ(xe) Lxe—o?+m

wherexe and Q(xe) are given by Eq969) and (68), respectively.
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For m = 1the right-hand side of Eq72) should be understood as a limit

. -1
51xk > lim

i
m—)l\/m_n L2—(062—1).

(73)

We illustrate Theorerh5with three simple examples, the cases- 1, % and 0. The cases
m= % and 0 correspond to two linear difference-differential equations of first order satisfied
by confluent hypergeometric functions. As commented in the case of Gauss hypergeometric
functions, interlacing properties between the zeros of contiguous functions can be obtained
by using Sturm methods as describedlif].

41.m=1

This corresponds to the trivial change of variaple) = x. In this case

2L 1-0o?
4000 = =14 —+ ——, (74)
X

which is strictly decreasing ifx| <1; the relative extremum for| > 1 in (0, +00) is

2 2 2
reached ate = % 1 whereQ(xe) = % > 0.
a —_—

Theorem 16. The zeros of confluent hypergeometric functionglint-oco) and, in par-

ticular, the zeros of Laguerre polynomialé,‘“) (x), satisfy the following properties under
oscillatory conditiongEq. (63))
(1) If |o) <1then4?x; > 0, in other words

X < (X1 + xk—1)/2. (75)
(2) If |o| > 1then

2_1
Xp+1 — Xk > R (76)
L2 — (a2 —1)
The zeros of Hermite polynomial, (x) (« = —%), Xk, satisfy
< G+ R /2 (77)

1
This corresponds to the change of variatile) = 2./x. We have

a? —1/4
——.

Q(x)=—x+2L — (78)

This function is monotonically decreasing fioff < % For | > % it has only one local

extremum forx > 0, which is a maximum and it is reachedxat = /o2 — 711, where
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Q(xe) = 2(L — Ja? — %1)- For x| = % this value is also an upper bound for the function

Q(x), because its maximum value is reached at O in this case. Therefore the following
holds.

Theorem 17. The zeros of the confluent hypergeometric functiori,ir-co) and,in par-
ticular, the zeros of Laguerre polynomialé“) (x), satisfy the following properties under
oscillatory conditiongEg. (63))

(1) If jol < 3 then4? /x> 0, that is

Vi < —Vx’“rl"z' VX1 (79)
(2) If |2| > then
T
AYxk = X1 — x> : (80)
\/Z(L — o2 —1/8
The zeros of Hermite polynomidts, (x) (L = n + % ando = —%) satisfy the following
two properties simultaneously
Xk+1 + Xp—1
Xp < —m——,
2
- (81)

Xpgl — X > ———.
* N

The bound for the distance between zeros of Hermite polynomials is giy&2, iformula
(6.31.21), p. 131].

43.m=0

This corresponds to the change of variable) = log(x). The singularities at = 0
disappear fronf2(x), which becomes a parabola

4Q(x) = —x? + 2Lx — o°. (82)

The maximum is reached at = L, where 42(xe) = L2 — «2. Therefore, the zeros of

the confluent hypergeometric functions (like Laguerre polynomials) satisbg(x) >
2n

[12 _ o2

Theorem 18. The zeros of the confluent hypergeometric functiori®,in-oco) and,in par-
ticular, the zeros of Laguerre polynomiadé“) (x), satisfy the following properties for any
values of the parameters consistent with oscilla{igg. (63))

Xk+1

v
> ex 22— |.
Xk p( /L2—0€2>

(83)
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The zeros of Hermite polynomials satisfy

k1 T
= > exp| — . (84)
Xk ( /L2 _ O(2>
5. The confluent equation for thegF1(; ¢; x) series: Bessel functions
The confluent hypergeometric equation
x°y" + (v+Dxy +xy=0 (85)

has one solution that can be written as a hypergeometric sgi€sv + 1; —x). The
differential equation has oscillatory solutions only for- 0 and the oscillatory solutions
have an infinite number of zeros. We use as argument and= v+ 1 as parameter in the
oF1 series because this notation provides a simple relation with Bessel functigis; if)

is a solution of (85), the function

y(x) = x"2¢( v x%/4) (86)
is a solution of the Bessel equation
X%y +xy + (¢ —x%)y =0 (87)

forx > 0.
In particular, the regular Bessel functidin(x) is related to theF1(; v + 1; —x) series.
Throughout this section we will express the results both in terms of the zeros of Bessel
functionsc, x and the zeros of the solutions of (85).
With the changes of variablgx) such that’(x) = d(x) = x”~1 we obtain

Q)= -T2~ " (88)
X

and, depending on the valuesmafandv, all the cases described in Theoreinand3 (or
Remark2) are possible. Namely the following holds:

Lemma 19. LetQ(x) given by Eq(88) and let

_ m(v2 — mz)
a1 .
so that

Then the following hold:
) If
@) vl > Im| andm <3,
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(b) or || = |m| < 3,
(c) or |v| < |m|]andm < O,
then the hypothesis of Theor@tl) are satisfied.
2) If
@ vl =1Iml > 3,
(b) or |v| < |m| andm >3,
then the hypothesis of Theor&tR) are satisfied
3) If |v| > |m| andm > % thenQ(x) reaches only one absolute extremumsifas 0 and
it is a maximum located at = xe, WhereQ(xe) > 0. Theoreml(1) (with Remari2)
can be applied.
(4) If |v] < |m| andm € (0, %), thenQ(x) reaches only one absolute extremumifas 0
and it is a minimum located at = xe, WhereQ(xe) > 0. Theoreml(2) (with Remark
2) can be applied. .

In addition,whenm = 5, we have forx > 0

(1) If |v] > 3, then@(x) > 0andQ(x) < 1.
(2) If |v| = 3, thenQ(x) = 1.
(3) If vl < 3, then@'(x) < 0andQ(x) > 1.

Then, using these results we have the following theorem.

Theorem 20. Let xk, x¢41, ..., With x; < xx41 < ---, be positive consecutive zeros of
solutions ofx2y” + (v + 1)y + xy = 0. LetJ,,x; and 5,2,,xk be as in Eq(71). Then the
following hold:
) If
(@ vl > |m| andmg%,
(b) or |v| = |m| andm < 3,
(c) or|v] < |m|andm < O,
thend? x; < O.
2) If
@) |v| = |m| andm > 3,
(b) or |v| < |m| andm >3,
thend? x; > 0.
(3) If || > |m| andm > 3 thend,,x, > 1//Q(xe).
(@) If |v| = |m| andm =  thens,,x; = m.
(5) If [v| < |m| andm € (0, 3] thend,xx < n/v/Q(xe).
m VZ —m2 H 1
wherexe = Zm if m # 5 and

m — —

2

1 ifm=
Q(xe) = :
e {—1m1 if m#

2mxg

3

NI NI
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Relations between the zeros of Bessel functions can be obtained from Th20rem
placingx; by ¢2, /4. Whenm = 3 we obtain the following well-known result.

Theorem 21. The zeros of Bessel functions; satisfy
(1) If [v| > 3 thency g1 — ey > .
(2) If [v| = 3 thency g1 — ¢y = .
3) If v < % thency k41 — cyk < .

Whenm = 0, z(x) = log(x) andé%xk = log(xx+1) — 2log(x) + log(xx—1) < 0 and
thenx; > /xr—_1xx+1. In terms of the zeros of Bessel functions this inequality can be
written as follows:

Theorem 22. Letc, x be consecutive zeros of a Bessel function of ord&hen
Cyv.k > /Cyvk—1Cy k+1. (92)

Using a variant of Sturm theorems, arelated inequality was proj&@jmamely, that the
extremun‘c’v’ , between two consecutive zer@s, andcy ;41 satisfie&’v,k > /Cy kCy k+1-

6. Conclusions

We have developed a systematic study of transformations of second-order hypergeometric
equationsto normal form by means of Liouville transformations. We choose transformations
such that the problem of computing the extrema or studying the monotonicity properties
of the resulting coefficient reduces to solving a quadratic equation. Classical results on
distances between zeros and convexity propefiigsare particular cases of the obtained
properties. Other results, like the convexity property proved by Gro$iddor Legendre
polynomials can be also obtained and generalized with our approach. In particular, Gros-
jean’s inequality has been proved to be valid for Jacobi polynomials too. Other properties
have also been derived, like bounds on ratios of consecutive zeros of Gauss and confluent
hypergeometric functions and finally an inequality that involves the geometric mean of the
zeros of Bessel functions.

Appendix A. Proof of Sturm theorems

The bounds on distances between consecutive zeros of Thégesm Remarl?) can be
easily obtained using Sturm comparison theorem in the form given, for instaft8].iAn
even more direct proof can be found using the Ricatti equation associatéd #yx)y = 0,
similarly as was done ifiL0]. We prove the second result in Theorén(also taking into
account the comments in Remakand the second result in Theor8rfwhich implies the
fourth result in Theorem). The remaining results can be proved in an analogous way.

Let x; < xx+1 be consecutive zeros gfx), which is a non-trivial twice differentiable
solution ofy” + A(x)y = 0in (a, b), A(x) being continuous ifa, b). Becausey(x) is
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non-trivial we have that necessarit¥(x;)y'(xr1+1) # 0. Without loss of generality we can
suppose that(x) is positive in(xg, xx11). Theny’(x;) > 0 andy’(x;+1) < 0 and therefore
the function

h(x) = =y'(x)/y(x) (A.1)

satisfies Iin}_)x; h(x) = —o0 and Iimx_mk-+l h(x) = +oo. Furthermoré:i(x) is differen-
tiable in (xx, xx11) and

B (x) = A(x) + h(x)?. (A.2)

Assuming now thati (x) > A,, > 0in (a, b) (with the exception of one point if Remark
2 is considered) it follows that’ > A,, + k2 in (xx, xx4+1) and therg(x) = A’ (x) /(A +
h(x)%) — 1 > 0. Therefore

Xk+1—€
lim / gx)dx >0

e=0"J xi+e

so that

T
VAn
This proves (2) of Theoret(of course, this result remains valid in those situations described
in Remark2).

To prove the second result of Theor8we consider the hypothesis of that theorem with
A’(x) < OwhenA(x) > 0in(a, b). With these hypothesis, it is obvious that if there exists
¢ € (a, b) suchthatA(x) < O for everyx € (c, b) then, for any non-trivial solutiom(x) in
(a, b) there is at most one zero fin, b). This follows from the fact thati(x) < 0in (¢, b)
and theny(x)y”(x) > 0in (c, b). Letx; < xx41 < xr12 be consecutive zeros such that

A(xy) > 0andA(x;+1) > 0. Taking into account thad (x) > A(x+1) IN (xk, Xk41), We
have, similarly as before, that

— (k41— xx) > 0.

T

—— > Xj41 — Xk
v AXk+1)

and, regardless of the sign Afx;,2), we have thatd(x) < A(xg41) in (xg+1, xx+2) and
therefore
s

———— < X2 — Xk+1-
v A(Xk+1)

Egs. A.3) and A.4) imply thatA%x; = xx42 — 2x¢41 + xx > 0, which proves the second
result of Theoren3.

(A.3)

(A.4)

Appendix B. General changes of variable for the Gauss hypergeometric equation

Starting from the Gauss hypergeometric equatid) (vritten in standard form (6), and
considering a Liouville transformation with change of variabie) such thatz’(x) =
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xP~1(1 — x)?2~1 we find (Eq. (13)) that
2 2 2
Qx) = %x2(1—p)(l _ 210 <L -0 =p+1-2(p-D(@-1

x(1—x)

* x? * a- )c)2
Let us notice that interchanging the valuepa@ndq is equivalent to interchangingand
pandxand 1— x.

We want to obtain the values pfandq such that solvingP(x) = 0 forx € (0,1) is
equivalent to solving a quadratic equation (or maybe a linear one), for any values of the
parameters, o« andf. Taking the derivative, we find that it has the following structure

P’ q2_ﬁ2). (B.1)

Qx)=x"2rY1—x)"271p(x), (B.2)

where P(x) = azx® + a»x? + a1x + ag is a polynomial of degree 3 with coefficients
depending on five parametels;: o, 8, p andg. Now, Q' (x) = 0 will be equivalent to a
quadratic equation 0, 1) whenas = 0, whenP(0) = 0 and thenP (x) = x(bpx? +
b1x + bo) or similarly whenP (1) = 0. A lengthy but straightforward calculation gives

1
a3=3A-p—q) L2~ 1-p-07],
1
PO = —5p(p* =),

1
P(1) = §q<q2 - BA. (B.3)

Hence, the equivalence with a quadratic equation is true if and only if one of these conditions
is satisfied:

1. p+qg=1,
2. p=0,
3. ¢=0, (B.4)

which confirms that the changes implied by Eq. (24) are indeed valid. The general changes
induced by these conditions are themselves related to hypergeometric functions. Of course,
given any valid change of variablgx), z(x) = K1z(x) + K2, whereK1 andK; are con-
stants is also valid and equivalent:tx) in the sense that they provide the same properties.
As mentioned before, we always take) such that’(x) > 0 for everyx.

In the casep > 0 we can take as(x) the following incomplete beta function

z(x) = /x P~ Y1 —n7"Ydr = B.(p, q)
0

xl’
=?2F1(1—q,p;p+l;x), (B.5)

and forg > 0 we may consider

1—-x)1

z(x) = —B1_x(q, p) = — 2Fil—p,gig+1;1—x). (B.6)
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These changes of variable do not make sense when0 org = 0, but the differences,
z(xx11) — z(xx) do make sense in the limjt — 0 (org — 0). Of course, these cases can
be also considered separately.
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